Id2 intrinsically regulates lymphoid and erythroid development via interaction with different target proteins.

نویسندگان

  • Ming Ji
  • Huajie Li
  • Hyung Chan Suh
  • Kimberly D Klarmann
  • Yoshifumi Yokota
  • Jonathan R Keller
چکیده

Inhibitors of DNA binding (Id) family members are key regulators of cellular differentiation and proliferation. These activities are related to the ability of Id proteins to antagonize E proteins and other transcription factors. As negative regulators of E proteins, Id proteins have been implicated in lymphocyte development. Overexpression of Id1, Id2, or Id3 has similar effects on lymphocyte development. However, which Id protein plays a physiologic role during lymphocyte development is not clear. By analyzing Id2 knock-out mice and retroviral transduced hematopoietic progenitors, we demonstrated that Id2 is an intrinsic negative regulator of B-cell development. Hematopoietic progenitor cells overexpressing Id2 did not reconstitute B-cell development in vivo, which resembled the phenotype of E2A null mice. The B-cell population in bone marrow was significantly expanded in Id2 knock-out mice compared with their wild-type littermates. Knock-down of Id2 by shRNA in hematopoietic progenitor cells promoted B-cell differentiation and induced the expression of B-cell lineage-specific genes. These data identified Id2 as a physiologically relevant regulator of E2A during B lymphopoiesis. Furthermore, we identified a novel Id2 function in erythroid development. Overexpression of Id2 enhanced erythroid development, and decreased level of Id2 impaired normal erythroid development. Id2 regulation of erythroid development is mediated via interacting with transcription factor PU.1 and modulating PU.1 and GATA-1 activities. We conclude that Id2 regulates lymphoid and erythroid development via interaction with different target proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mature natural killer cell and lymphoid tissue–inducing cell development requires Id2-mediated suppression of E protein activity

The Id2 transcriptional repressor is essential for development of natural killer (NK) cells, lymphoid tissue-inducing (LTi) cells, and secondary lymphoid tissues. Id2 was proposed to regulate NK and LTi lineage specification from multipotent progenitors through suppression of E proteins. We report that NK cell progenitors are not reduced in the bone marrow (BM) of Id2(-/-) mice, demonstrating t...

متن کامل

Gfi-1 regulates the erythroid transcription factor network through Id2 repression in murine hematopoietic progenitor cells.

Growth factor independence 1 (Gfi-1) is a part of the transcriptional network that regulates the development of adult hematopoietic stem and progenitor cells. Gfi-1-null (Gfi-1(-/-)) mice have reduced numbers of hematopoietic stem cells (HSCs), impaired radioprotective function of hematopoietic progenitor cells (HPCs), and myeloid and erythroid hyperplasia. We found that the development of HPCs...

متن کامل

Id2 is dispensable for myc-induced lymphomagenesis.

The Emu-Myc transgenic mouse appears to be an accurate model of human Burkitt's lymphoma that bears MYC/Immunoglobulin gene translocations. Id2, a negative regulator of basic helix-loop-helix transcription factors, has also been proposed as a Myc target gene that drives the proliferative response of Myc by binding to and overriding the checkpoint functions of the retinoblastoma tumor suppressor...

متن کامل

Range Determination of Antigen Expression in Myeloid, Erythroid and Lymphoid Cell Lineages among Patients with Myelodysplastic Syndrome

Background: Myelodysplastic syndrome is a mixed clonal disorder of bone marrow progenitor cells. Understanding the pattern of the different lineage-specific, immature, and mature markers in myelodysplastic syndrome will help in setting-up the frame of reference to diagnose. Patients and Methods: We compared 60 bone marrow samples from 30 newly-diagnosed patients with myelodysplastic syndrome ...

متن کامل

Expression of SCL is normal in transfusion-dependent Diamond-Blackfan anemia but other bHLH proteins are deficient.

Basic helix-loop-helix proteins, which are tissue specific (SCL) or broadly expressed (E proteins), interact positively to regulate erythroid specific genes. Here, expression of SCL and two broadly expressed E proteins, E47 and HEB, was high early in erythroid differentiation and declined during maturation. Stimulation of erythroid progenitors/precursors with stem cell factor (SCF) enhanced SCL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 112 4  شماره 

صفحات  -

تاریخ انتشار 2008